Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 139: 108865, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277048

RESUMO

Shrimp are especially susceptible to the White Spot Syndrome Virus (WSSV). Oral administration of the WSSV envelop protein VP28 is a promising approach to protect shrimp against WSSV. In this study, Macrobrachium nipponense (M. nipponense) were fed for 7 days with food supplemented with Anabaena sp. PCC 7120 (Ana7120) expressing VP28 and then challenged with WSSV. The survival rates of M. nipponense in three groups, including control, WSSV-challenged, and VP28-vaccinated, were subsequently determined. We also determined the WSSV content of different tissues and the tissue morphology in the absence of and after viral challenge. The survival rate of the positive control group (no vaccination and challenge, 10%) and empty vector group (fed with Ana7120 pRL-489 algae and challenged, 13.3%) was much lower than the survival rate of M. nipponense in wild type group (fed with Ana7120 and challenged, 18.9%), immunity group 1 (fed with 3.33% Ana7120 pRL-489-vp28 and challenged, 45.6%) or immunity group 2 (fed with 6.66% Ana7120 pRL-489-vp28 and challenged, 62.2%). RT-qPCR showed that WSSV content of the gill, hepatopancreas and muscle of immunity groups 1 and 2 were substantially lower than the positive control. Microscopic examination revealed that WSSV-challenged positive control exhibited large number of cell rupture, necrosis, nuclear exfoliation in gills and hepatopancreatic tissues. The gill and hepatopancreas of immunity group 1 showed partial symptoms of infection, yet the tissue was visibly healthier than that of the positive control group. No symptoms were visible in the gills and hepatopancreatic tissue of immunity group 2. The results demonstrate that the probability of M. nipponense infected by WSSV can be diminished by oral administration of cyanobacteria-expressed VP28. Such an approach could improve the disease resistance and delay the death of M. nipponense in the commercial production of this shrimp.


Assuntos
Anabaena , Palaemonidae , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Microscopia , Proteínas do Envelope Viral
2.
Mar Pollut Bull ; 191: 114974, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116250

RESUMO

Due to ever-increasing global warming, ocean acidification, and inshore eutrophication, the outbreak of golden tides with Sargassum horneri has increased in the Yellow sea, where the biomass carbon enters three main carbon pathways: a. Removal of carbon from seawater by salvage, known as removable carbon; b. Biomass carbon is deposited to the seafloor through POC and RDOC through Biological Carbon Pump and Microbial Carbon Pump; c. Re-entering the carbon cycle through the food chain or re-entering the atmosphere through the action of microbes. Estimating carbon fixation (removable carbon) and storage (particulate organic carbon (POC) and refractory dissolved organic carbon (RDOC)) is vital in studying the global carbon cycle. In this research, it was observed that the C content of S. horneri was high, and the utilization rate of dissolved organic carbon (DOC), RDOC, and POC was also high in the eutrophication environment, where only 2.71 % of algal biomass carbon was converted to RDOC, and only 0.20 % converted to POC. The C + N + P combination has a restart effect on the seasonal accumulation of RDOC in relevant sea areas. It is suggested that the salvage and resource utilization should be strengthened to effectively control the golden tide and reduce the substantial economic losses to realize the win-win situation of carbon sink and environmental restoration.


Assuntos
Carbono , Água do Mar , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio , Biomassa
3.
Food Res Int ; 165: 112559, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869543

RESUMO

Seaweeds (green algae, red algae and brown algae) are rich in nutrients, and incorporating algae into the human diet can provide important health benefits. However, consumer acceptance of food is closely related to its flavor, and in this respect, volatile compounds are key factors. This article reviews the extraction methods and composition of volatile compounds from Ulva prolifera, Ulva lactuca, Sargassum spp. and economically valuable cultured seaweeds such as Undaria pinnatifida, Laminaria japonica, Neopyropia haitanensis and Neopyropia yezoensis. Research found that the volatile compounds of the above seaweeds were composed mainly of aldehydes, ketones, alcohols, hydrocarbons, esters, acids, sulfur compounds, furans and small amounts of other compounds. Volatile compounds such as benzaldehyde, 2-octenal, octanal, ß-ionone and 8-heptadecene have been identified in several macroalgae. This review argues that more research on the volatile flavor compounds of edible macroalgae is required. Such research could aid new product development or widen applications of these seaweeds in the food or beverage sectors.


Assuntos
Produtos Biológicos , Alga Marinha , Humanos , Alimentos , Bebidas , Ésteres
4.
Fish Shellfish Immunol ; 128: 28-37, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35842114

RESUMO

Litopenaeus vannamei is the most important shrimp species throughout the world. However, diseases are increasing with the development of the industry, so enhancing the immunity of shrimp is of great significance. In this study, 1800 shrimp were divided into two groups randomly: the control group (N, feed with brine shrimp flake) and the experimental group (M, feed with mutant of Synechocystis sp. cells) (300 shrimp/group/replication) and each trial was conducted in triplicates. After immunization, sixty shrimp (with three replicates of twenty) were collected at 0 h in group N and 24, 72, and 144 h in group M, respectively, and the hepatopancreas were isolated for transcriptomic and metabolomic analysis. Transcriptome data revealed that compared with group N, genes related to antimicrobial peptides, cytoskeleton remodeling, detoxification, apoptosis, blood coagulation, immune defense, and antioxidant systems were differentially expressed in group M. In addition, combined transcriptomic and metabolomic analysis revealed that some immune-related differential genes or differential metabolites were consistently expressed in both omics. All the above results indicated that trans-vp28 gene Synechocystis sp. PCC6803 could improve the immunity of L. vannamei. This is the first report of the integration of dynamic transcriptomics combined with metabolomics to study the effect of trans-vp28 gene Synechocystis sp. PCC6803 in the hepatopancreas of L. vannamei and provided important information about the defense and immune mechanisms used by invertebrates against pathogens.


Assuntos
Penaeidae , Synechocystis , Animais , Antioxidantes/metabolismo , Hepatopâncreas/metabolismo , Metabolômica , Synechocystis/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...